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AES - Advanced Encryption Standard

US governmental encryption standard

Open (world) competition announced January 97

Blocks: 128 bits

Keys: choice of 128-bit, 192-bit, and 256-bit keys

October 2000: AES=Rijndael

Standard: FIPS 197, November 2001
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AES=Rijndael

Designed by Joan Daemen and Vincent Rijmen

Simple design, byte-oriented

Operations: XOR and table lookup

S-box, substitutes a byte by a byte

Rounds | 10 12 14
Key size | 128 192 256

Focus on 128-bit key version with 10 iterations
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Multiplication in GF(256) - AES

o In AES the finite field GF(28) is determined by irreducible
polynomial
m(x) =x®+x* + x>+ x+1

o Elements of GF(28) are all polynomials of degree less than
eight and with coefficients in GF(2)

@ 1-to-1 correspondence between 8-bit vectors and elements in
GF(28):

o finite field element p(x) = Z?:o bix'.
e 8-bit vector v = (b7, bg, bs, by, bz, by, by, bo)
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Multiplication in GF(256) (cont.)

i

Compute [;(X) times g(x), where p(x) = Z,T:o bix',
q(x) = 2o Gix":
e Do straightforward multiplication of polynomials p(x) - g(x);

@ Reduce result modulo m(x).

SEE

Compute x® + x* + x2 + x4+ 1 times x” + x + 1
o X+ x* + X2+ x+D)(x" +x+1)=
o xB x4 x9 4 x84 x4+ x5+ x4+ x34+1 mod xB+x*+x3+x+1 =
x" 4+ x5 +1

Alternative representation: 57, x 83, = c1, (hex notation)
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Multiplication by x in GF(256)

Find the product r(x) of p(x) = Z,?:o bix" and x in GF(28):
o Compute p(x) - x = S.7_o bjxt1

o If by =0, r(x) = p(x) - x
If by =1, r(x) = p(x) - x mod m(x) = p(x) - x + m(x)

o (X" + X0+ x4 x* +x%) x x=xB 4+ xT + x84+ x5+ 3
o reduce modulo m(x) = x® + x* + x3 + x + 1
o result is x” + x5 + x5 + x* + x+1

@ Hex notation: 4, x 02, = 3,
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Multiplication by x+1 in GF(256)

Find the product r(x) of p(x) = S°/_y bix’ and x + 1 in GF(28):
o Compute (p(x) - x) + p(x) = So1_g bi(x' + x™*1)

e If by =0, r(x) = p(x) - x + p(x)
If b7 =1,
r(x) = (p(x) - x) + p(x) mod m(x) = p(x) - x + p(x) + m(x)

o (X" + X0 x4 x*+x%) x (x+1)=xB x4 x3+x°
o reduce modulo m(x) = x® + x* + x3 + x + 1
o result is x> + x4+ 1

@ Hex notation: 4, x 03, = 07,
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AES - iterated cipher, key schedule

Input: user selected key of 128 bits

Output: 11 round keys ko, k1, k2, . . ., k1o

@ p = ¢ plaintext

ci = F(ki,ci—1)

c10 ciphertext

Details of key-schedule are self-study
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AES round tranformation

Arrange the 16 input bytes in a 4 x 4 matrix
Subfunctions
@ SubBytes (byte substitution via S-box)
@ ShiftRows
© MixColumns
© AddRoundKey
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SubBytes

TN

ao,0|a0,1 30% ao,3 bo,o bo}‘Q)g bo,3
ar0|a11ffa,2f a1,3 bi,o|b1,1{b12fb1,3
az0|az1|az2|az;3 boo|b21|b22|bo3
asolasi|asz2|ass bz o|b31|b32|b3 3

S is the S-box (invertible)
One S-box for the whole cipher (simplicity)
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ShiftRows

a b Cc d a b c d
el f| & h —> | f | & h|e
i J | k| — k| Iy i]J
m|n|ol|PpP -> pim|njo

Rows shifted over different offsets: 0,1,2, and 3
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MixColumns

/—> mix four bytes \

a0,0 | a0,1 20,2 20,3 bo,o | bo,1[|bo,2f bo,3
aro|ai,1flar,2fa1,3 bi,o|b1,1 b1 b1,3
asolaz1flaz,2fa2,3 byo|b2,1(b2,2f b2,3
asolazfas2f]as,3 bz o|b31(lbs 2 b3,3

Each of four b;j in a column depends on all four a;; from same
column
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AddRoundKey (bit-wise XOR)

40,0{40,1(20,2|40,3 ko,o[ko,1|ko,2|ko,3 bo.o{bo,1|bo,2|bo,3
a1,0|91,1|21,2(31,3 ki,0|ki,1lki2|ki3 b1 o|b1,1|b1,2|b1,3
@ frd
a2,0(a2,1(32,2|32,3 koolko,1|k2,2| k2,3 bzo|b2,1|b2,2|b2,3
a3,0(a3,1(33,2|43,3 k3,0lk3,1|k3,2|k3 3 b3 o|b3.1|b3,2|b3 3
bij = aij © kij
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AES - 10-round version

Arrange the 16 input bytes in a 4 x 4 matrix
o AddRoundKey

@ Do nine times
o SubBytes (byte substitution via S-box)

e ShiftRows
o MixColumns

o AddRoundKey
@ SubBytes

@ ShiftRows

o AddRoundKey
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@ Input a, output b, both bytes
o Let f(x) =x"1in GF(2%)/{0} and f(0) =0

@ Then b = A(f(a)), where A is affine mapping over GF(2).
With t = f(a) = (t7, ts, - . ., t1, to) output is:
0 1

[ 17T to] [ 1]
1 ty
1 to
1 t3
0 ta
0 tg
0 te
1

0
0
0
1
1
1
1
1 t7

H == =000
e == R = R

O OO F = = =
OO R HEFEH~=FEO

OrRr PR KFHERFRO
= = O OO =
O = M= O OO K
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2 3 11
1 2 31 y
/" 112 3
311 2
a0,0 | a0,1 20,2 20,3 bo,o | bo,1[|bo,2f bo,3
ar0|a11ffar,2fa1,3 bio|b1,1lb12b13
azolazflaz,2faz,3 by o|b2,1(|b2,2f b2,3
asolazfas2f]as,3 bz o|b31(lb3 2 b3,3

Bytes in columns are combined linearly

bolyg =S {2} X ap2 =+ {3} X a12 + {1} X az2 + {1} X az o

Multiplication is over GF(28)
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Diffusion in AES

o
) Shift | & Mix L
—> —_—>
Rows Col. 'S
'Y
L LI
Shift & | Mix Alo|d]|b
—_—> -
Rows 'S Col. Alalala
L AlA|a|s
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Differential characteristics and active S-boxes

Consider SP-networks like AES, where a round consists of
o key addition
@ S-box layer

o linear layer (linear mapping)

In a differential characteristic an S-box is active if the inputs to the
S-box are assumed to be different.

Fact (or assumption)

The transition of differences

@ is deterministic through the key additions and linear layers.

@ is non-deterministic through the S-box layers.

L.R. Knudsen Advanced Encryption Standard



Differential characteristics and active S-boxes (2)

Max probability

Let pmax be the maximum probability for a non-trivial characteristic
for the S-boxes.

Let d be the minimum number of active S-boxes in an r-round
characteristic.

Then pd,,. is an upper bound of any r-round characteristic.

L.R. Knudsen Advanced Encryption Standard



AES and Wide-Trail

The AES design uses the wide-trail strategy:

Theorem

Any differential/linear characteristic over 4 rounds of AES has at
least 25 active Sboxes.

@ AES has 10 (or more) rounds
@ Together with the good Sbox: More than enough.

L.R. Knudsen Advanced Encryption Standard



[SIs[s[s]

Linear Layer L

[SIs[s[s]

Aim
Give a bound on the number of active Sboxes in a differential
characteristic.
We assume S and L are bijective.
e L linear, so L(x @ y) = L(x) @ L(y).

@ No further assumptions on S
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[SIs[s[s]

Linear Layer L

[SIs[s[s]

Aim
Give an lower bound on the number of active Sboxes in a
differential characteristic.

Trivial bounds:
@ Lower Bound for the lower bound: 2
@ Upper Bound for the lower bound: #sboxes + 1 (here 5).
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Picture with differences:

A=a @ a1 a2 O3

| S]s[s[s]
A=p po B B2 B3

Linear Layer L

A=y 7% 71 72 73
[s[sls|s]

° v =L(p)

@ # active Sboxes is

{i | ei # 0} +[{j [ v # O} = [{i | Bi # O} + [{J [ v # O}
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Trivial lower bound on 2 rounds

A=a @ a1 a2 Q3

| S]s[s[sS]
A= po B B2 B

Linear Layer L

A=~ 7% 7 7% 73
[sIs[s[s]

Lower bound: 2
@ a # 0 (at least one «; # 0).
@ = 3 # 0 (at least one f3; # 0). (Sbox bijective)
e = v # 0 (at least one 7; # 0). (L is bijective)
o = [{ilai 0+ {jly#0}=21+1=2
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Trivial upper bound on 2 rounds

A=a @ a1 a2 QO3

| S]s[s[s]
A= po B B2 s

Linear Layer L

A=y 7% 71 72 73
[s[sls|s]

Upper bound on the lower bound: #sboxes 4+ 1 (here 5).

{ilai 0+ {j1v#0} <1+4=5

Definition
The branch number of a linear transformation L is the minimum
number of active words (Sboxes) in the inputs and outputs of L.
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AES MixColumns - branch number

MixColumns: multiplication of a (4 x 1) GF(28)-column vector by
a (4 x 4) GF(28)-matrix M given by

M derived from MDS code over GF(28) with parameters [8, 4, 5].

The branch number of MixColumns is five.
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4 rounds of AES - the super box

[S1[S][S][S]

[S1[ST[S][S]

[S1[ST[S][S]

[SI[ST[S][S]

Ly-layer

Ly-layer

Ly-layer

Lq-layer

[S1[S][S] (8]

[S1[ST[S][S]

[S1[ST[S][S]

[SI[ST[S][S]

[

[

[

[

Lo-Layer

[

[

[

[

[S1[S][S][S]

[S[ST[S][S]

[S1[ST[S][S]

[SI[ST[S][S]

Ly-layer

Ly-layer

Ly-layer

Lqy-layer

[S1[S][S] (8]

[S[ST[S][S]

[S1[ST[S][S]

[SI[ST[S][S]
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4 rounds of AES

@ Choose L to ensure by sboxes in each Super-Box

@ Choose L; to ensure by active Super-Boxes

Concatenation of Codes

Each characteristic over 4 rounds has at least b; - by active Sboxes.

For AES: by = b, = 5 thus 25 active Sboxes over 4 rounds.
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Bounds of probabilities of characteristics of the AES

25 active Sboxes over 4 rounds.

S-box is differentially 4-uniform, so maximum probability of
characteristic is
4)28 =276

2—150

maximum probability for characteristic over 4 rounds is
2—300

maximum probability for characteristic over 8 rounds is
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Integral cryptanalysis or the Square attack

Lars R. Knudsen

June 2014
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Integral cryptanalysis

@ (G, +) finite abelian group, order k

@ Sasetofvectorsin G xGx---xG

Zv

vES

@ An integral over S:

where summation is defined by '+’

@ Typically, a vector element is a plaintext/ciphertext word and
a vector represents a plaintext or ciphertext
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Integrals, cont.

o Let v(i) = (w(i), vi(i),...,va—1(i)) € G"
@ Let S a set of vectors {v(i)}

@ Three distinct cases where ¢; and s are some known values

Case Notation

vi(i)=cj forall v(i) e S C “constant”
{yi()v()eSt=6G Al

Zv(i)es vi(i) =s S sum is known

@ In most (all?) cases the integral over S can be determined
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Useful facts

(G, +) finite abelian additive group, let H={g € G | g + g = 0}.
Then s(G) = decg = hemwh -

G=2/mZ, even m: s(G) =m/2, odd m: s(G) = 0.
G = GF(2°): s(G) = 0.

(G, %) finite abelian multiplicative group, let
H={geG|g*xg=1}. Thenp(G):ngcg:HheHh.

For G = Z/pZ for p prime: p(G) =p— 1.
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AES - (first-order) 3-round integral, 256 texts

AlC|C|C AlCc|C|C Al AL AL A
c|cic|c AlCc|C|C Al Al AL A
— — —
c|cic|c AlCc|C|C Al AL AL A
c|cic|c AlCc|C|C Al Al AL A
S|S|IS|S
S|S|IS|S
S|S|IS|S
S|S|IS|S
Here S =0
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Attack on AES reduced to four rounds

Use three-round integrals with 28 texts

Compute backwards from ciphertexts “to S"” guessing one
byte of last-round key

Repeat for all sixteen bytes in last-round key

Running time is approximately that of ¢ x 16 x 28 encryptions
for small ¢ > 1
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Attack on AES reduced to five rounds

@ One byte after i rounds of encryption, affects only 4 bytes
after i 4+ 1 rounds of encryption

@ Use three-round fourth-order integral with 22 texts

@ Compute backwards from ciphertexts “to §" guessing four
bytes in last-round key and one byte of second-to-last round
key

@ Repeat for all sets of four bytes in last-round key

@ Running time is approximately that of ¢, x 4 x 28 encryptions
for c; ~ 20
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Higher Order Integrals

Sets of vectors S = S; U --- U S, where each S; forms an integral
If integral over each S; is known, the integral over S known
Suppose a word can take m values

@ a first-order integral:
a set of m vectors different in only in one word

@ a dth-order integral:
a set of m9 vectors different in d components, s.t. each of m?
possible values for the d-tuple occurs exactly once

Notation: .A¢
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AES: four-round fourth-order integral

L.R. Knudsen Integral cryptanalysis or the Square attack

At C AYc | C |cC At A A A
A A Cc | cC |cC A A AY A
c | A AYlc | cCc |c¢C A A A A

c|c|C | A AYc | C |c¢C At A A A

—

At A Af A S|S|S|S

At A AY A S|S|S|S

At At AY A S|S|S|S

AL A At A S|S |8 |S




Attack on AES reduced to six rounds

o Use four-round fourth-order integral with 232 texts

@ Compute backwards from ciphertexts guessing 5 bytes of
secret key

@ Running time is approximately that of 2*2 encryptions

L.R. Knudsen Integral cryptanalysis or the Square attack



