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AES - Advanced Encryption Standard

US governmental encryption standard

Open (world) competition announced January 97

Blocks: 128 bits

Keys: choice of 128-bit, 192-bit, and 256-bit keys

October 2000: AES=Rijndael

Standard: FIPS 197, November 2001
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AES=Rijndael

Designed by Joan Daemen and Vincent Rijmen

Simple design, byte-oriented

Operations: XOR and table lookup

S-box, substitutes a byte by a byte

Rounds 10 12 14

Key size 128 192 256

Focus on 128-bit key version with 10 iterations
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Multiplication in GF(256) - AES

In AES the finite field GF (28) is determined by irreducible
polynomial

m(x) = x

8 + x

4 + x

3 + x + 1

Elements of GF (28) are all polynomials of degree less than
eight and with coefficients in GF (2)

1-to-1 correspondence between 8-bit vectors and elements in
GF (28):

finite field element p(x) =
P7

i=0 bix
i .

8-bit vector v = (b7, b6, b5, b4, b3, b2, b1, b0)
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Multiplication in GF(256) (cont.)

Compute p(x) times q(x), where p(x) =
P7

i=0 bix
i ,

q(x) =
P7

i=0 cix
i :

Do straightforward multiplication of polynomials p(x) · q(x);

Reduce result modulo m(x).

Example

Compute x

6 + x

4 + x

2 + x + 1 times x

7 + x + 1
(x6 + x

4 + x

2 + x + 1)(x7 + x + 1) =
x

13 + x

11 + x

9 + x

8 + x

6 + x

5 + x

4 + x

3 + 1

x

13+x

11+x

9+x

8+x

6+x

5+x

4+x

3+1 mod x

8+x

4+x

3+x+1 =
x

7 + x

6 + 1
Alternative representation: 57

x

⇥ 83
x

= c1
x

(hex notation)
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Multiplication by x in GF(256)

Find the product r(x) of p(x) =
P7

i=0 bix
i and x in GF (28):

Compute p(x) · x =
P7

i=0 bix
i+1

If b7 = 0, r(x) = p(x) · x
If b7 = 1, r(x) = p(x) · x mod m(x) = p(x) · x +m(x)

Example

(x7 + x

6 + x

5 + x

4 + x

2) ⇥ x = x

8 + x

7 + x

6 + x

5 + x

3

reduce modulo m(x) = x

8 + x

4 + x

3 + x + 1

result is x

7 + x

6 + x

5 + x

4 + x + 1

Hex notation: f 4
x

⇥ 02
x

= f 3
x
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Multiplication by x+1 in GF(256)

Find the product r(x) of p(x) =
P7

i=0 bix
i and x + 1 in GF (28):

Compute (p(x) · x) + p(x) =
P7

i=0 bi (x
i + x

i+1)

If b7 = 0, r(x) = p(x) · x + p(x)
If b7 = 1,
r(x) = (p(x) · x) + p(x) mod m(x) = p(x) · x + p(x) +m(x)

Example

(x7 + x

6 + x

5 + x

4 + x

2) ⇥ (x + 1) = x

8 + x

4 + x

3 + x

2

reduce modulo m(x) = x

8 + x

4 + x

3 + x + 1

result is x

2 + x + 1

Hex notation: f 4
x

⇥ 03
x

= 07
x
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AES - iterated cipher, key schedule

Input: user selected key of 128 bits

Output: 11 round keys k0, k1, k2, . . . , k10

p = c0 plaintext

c

i

= F (k
i

, c
i�1)

c10 ciphertext

Details of key-schedule are self-study

L.R. Knudsen Advanced Encryption Standard



AES round tranformation

Arrange the 16 input bytes in a 4 ⇥ 4 matrix

Subfunctions
1 SubBytes (byte substitution via S-box)

2 ShiftRows

3 MixColumns

4 AddRoundKey
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SubBytes

a0,0

a1,0

a2,0

a3,0

a0,1

a1,1

a2,1

a3,1

a0,2

a1,2

a2,2

a3,2

a0,3

a1,3

a2,3

a3,3

b0,0

b1,0

b2,0

b3,0

b0,1

b1,1

b2,1

b3,1

b0,2

b1,2

b2,2

b3,2

b0,3

b1,3

b2,3

b3,3

S

-

S-box
S is the S-box (invertible)
One S-box for the whole cipher (simplicity)
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ShiftRows

a

e

i

m

b

f

j

n

c

g

k

o

d

h

l

p

a

f

k

p

b

g

l

m

c

h

i

n

d

e

j

o

-

-

-

Rows shifted over different offsets: 0,1,2, and 3
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MixColumns

a0,0

a1,0

a2,0

a3,0

a0,1

a1,1

a2,1

a3,1

a0,2

a1,2

a2,2

a3,2

a0,3

a1,3

a2,3

a3,3

b0,0

b1,0

b2,0

b3,0

b0,1

b1,1

b2,1

b3,1

b0,2

b1,2

b2,2

b3,2

b0,3

b1,3

b2,3

b3,3

mix four bytes-

Each of four b
i ,j in a column depends on all four a

i ,j from same
column
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AddRoundKey (bit-wise XOR)

a0,0

a1,0

a2,0

a3,0

a0,1

a1,1

a2,1

a3,1

a0,2

a1,2

a2,2

a3,2

a0,3

a1,3

a2,3

a3,3

�

k0,0

k1,0

k2,0

k3,0

k0,1

k1,1

k2,1

k3,1

k0,2

k1,2

k2,2

k3,2

k0,3

k1,3

k2,3

k3,3

=

b0,0

b1,0

b2,0

b3,0

b0,1

b1,1

b2,1

b3,1

b0,2

b1,2

b2,2

b3,2

b0,3

b1,3

b2,3

b3,3

b

i ,j = a

i ,j � k

i ,j
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AES - 10-round version

Arrange the 16 input bytes in a 4 ⇥ 4 matrix

AddRoundKey

Do nine times
SubBytes (byte substitution via S-box)

ShiftRows

MixColumns

AddRoundKey

SubBytes

ShiftRows

AddRoundKey
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SubBytes

Input a, output b, both bytes

Let f (x) = x

�1 in GF (28)/{0} and f (0) = 0

Then b = A(f (a)), where A is affine mapping over GF (2).
With t = f (a) = (t7, t6, . . . , t1, t0) output is:

2

66666666664

1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1
1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1

3

77777777775

2

66666666664

t0
t1
t2
t3
t4
t5
t6
t7

3

77777777775

�

2

66666666664

1
1
0
0
0
1
1
0

3

77777777775
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MixColumns

a0,0

a1,0

a2,0

a3,0

a0,1

a1,1

a2,1

a3,1

a0,2

a1,2

a2,2

a3,2

a0,3

a1,3

a2,3

a3,3

b0,0

b1,0

b2,0

b3,0

b0,1

b1,1

b2,1

b3,1

b0,2

b1,2

b2,2

b3,2

b0,3

b1,3

b2,3

b3,3

2

664

2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2

3

775⇥-

Bytes in columns are combined linearly

b0,2 = {2}⇥ a0,2 + {3}⇥ a1,2 + {1}⇥ a2,2 + {1}⇥ a3,2

Multiplication is over GF(28)
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Diffusion in AES

� �
�
�
�
�

Shift
Rows
- Mix

Col.
-

�

�
�

�
�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

Shift
Rows
- Mix

Col.
-
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Differential characteristics and active S-boxes

Consider SP-networks like AES, where a round consists of
key addition
S-box layer
linear layer (linear mapping)

Definition
In a differential characteristic an S-box is active if the inputs to the
S-box are assumed to be different.

Fact (or assumption)
The transition of differences

is deterministic through the key additions and linear layers.

is non-deterministic through the S-box layers.
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Differential characteristics and active S-boxes (2)

Max probability
Let p

max

be the maximum probability for a non-trivial characteristic
for the S-boxes.

Active S-boxes
Let d be the minimum number of active S-boxes in an r -round
characteristic.

Bound
Then p

d

max

is an upper bound of any r -round characteristic.
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AES and Wide-Trail

The AES design uses the wide-trail strategy:

Theorem
Any differential/linear characteristic over 4 rounds of AES has at

least 25 active Sboxes.

AES has 10 (or more) rounds
Together with the good Sbox: More than enough.
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2 Rounds

S

S

S

S

S

S

S

S

Linear Layer L

Aim
Give a bound on the number of active Sboxes in a differential
characteristic.

We assume S and L are bijective.
L linear, so L(x � y) = L(x)� L(y).
No further assumptions on S
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2 Rounds

S

S

S

S

S

S

S

S

Linear Layer L

Aim
Give an lower bound on the number of active Sboxes in a
differential characteristic.

Trivial bounds:
Lower Bound for the lower bound: 2
Upper Bound for the lower bound: #sboxes + 1 (here 5).
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2 Rounds

Picture with differences:

S

S

↵0

�0

�0

S

S

↵1

�1

�1

S

S

↵2

�2

�2

S

S

↵3

�3

�3

Linear Layer L

� = ↵

� = �

� = �

� = L(�)

# active Sboxes is

|{i | ↵
i

6= 0}|+ |{j | �
j

6= 0}| = |{i | �
i

6= 0}|+ |{j | �
j

6= 0}|
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Trivial lower bound on 2 rounds

S

S

↵0

�0

�0

S

S

↵1

�1

�1

S

S

↵2

�2

�2

S

S

↵3

�3

�3

Linear Layer L

� = ↵

� = �

� = �

Lower bound: 2
↵ 6= 0 (at least one ↵

i

6= 0).
) � 6= 0 (at least one �

i

6= 0). (Sbox bijective)
) � 6= 0 (at least one �

i

6= 0). (L is bijective)
) |{i | ↵

i

6= 0}|+ |{j | �
j

6= 0}| � 1 + 1 = 2
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Trivial upper bound on 2 rounds

S

S

↵0

�0

�0

S

S

↵1

�1

�1

S

S

↵2

�2

�2

S

S

↵3

�3

�3

Linear Layer L

� = ↵

� = �

� = �

Upper bound on the lower bound: #sboxes + 1 (here 5).

|{i | ↵
i

6= 0}|+ |{j | �
j

6= 0}|  1 + 4 = 5

Definition
The branch number of a linear transformation L is the minimum
number of active words (Sboxes) in the inputs and outputs of L.
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AES MixColumns - branch number

MixColumns: multiplication of a (4 ⇥ 1) GF(28)-column vector by
a (4 ⇥ 4) GF(28)-matrix M given by

M =

0

BB@

02 03 01 01

01 02 03 01

01 01 02 03

03 01 01 02

1

CCA .

M derived from MDS code over GF (28) with parameters [8, 4, 5].

Fact
The branch number of MixColumns is five.
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4 rounds of AES - the super box

S S S S

L1-layer

S S S S

S S S S

L1-layer

S S S S

S S S S

L1-layer

S S S S

S S S S

L1-layer

S S S S

L2-Layer

S S S S

L1-layer

S S S S

S S S S

L1-layer

S S S S

S S S S

L1-layer

S S S S

S S S S

L1-layer

S S S S
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4 rounds of AES

Choose L1 to ensure b1 sboxes in each Super-Box
Choose L2 to ensure b2 active Super-Boxes

Concatenation of Codes
Each characteristic over 4 rounds has at least b1 · b2 active Sboxes.

For AES: b1 = b2 = 5 thus 25 active Sboxes over 4 rounds.
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Bounds of probabilities of characteristics of the AES

25 active Sboxes over 4 rounds.
S-box is differentially 4-uniform, so maximum probability of
characteristic is

4/28 = 2�6.

maximum probability for characteristic over 4 rounds is 2�150.
maximum probability for characteristic over 8 rounds is 2�300.
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Integral cryptanalysis or the Square attack

Lars R. Knudsen

June 2014
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Integral cryptanalysis

(G ,+) finite abelian group, order k

S a set of vectors in G ⇥ G ⇥ · · ·⇥ G

An integral over S : X

v2S
v

where summation is defined by ’+’

Typically, a vector element is a plaintext/ciphertext word and
a vector represents a plaintext or ciphertext
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Integrals, cont.

Let v(i) = (v0(i), v1(i), . . . , vn�1(i)) 2 Gn

Let S a set of vectors {v(i)}

Three distinct cases where cj and s are some known values

Case Notation

vj(i) = cj for all v(i) 2 S C “constant”

{vj(i) | v(i) 2 S} = G A “all”
P

v(i)2S vj(i) = s S sum is known

In most (all?) cases the integral over S can be determined
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Useful facts

Theorem

(G ,+) finite abelian additive group, let H = {g 2 G | g + g = 0}.
Then s(G ) =

P
g2G g =

P
h2H h .

Example

G = Z/mZ , even m: s(G ) = m/2, odd m: s(G ) = 0.
G = GF (2s): s(G ) = 0.

Theorem

(G , ⇤) finite abelian multiplicative group, let
H = {g 2 G | g ⇤ g = 1}. Then p(G ) =

Q
g2G g =

Q
h2H h .

Example

For G = Z/pZ for p prime: p(G ) = p � 1.
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AES - (first-order) 3-round integral, 256 texts

A C C C

C C C C

C C C C

C C C C

�!

A C C C

A C C C

A C C C

A C C C

�!

A A A A

A A A A

A A A A

A A A A

�!

S S S S

S S S S

S S S S

S S S S

Here S = 0
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Attack on AES reduced to four rounds

Use three-round integrals with 28 texts

Compute backwards from ciphertexts “to S” guessing one
byte of last-round key

Repeat for all sixteen bytes in last-round key

Running time is approximately that of c ⇥ 16⇥ 28 encryptions
for small c > 1
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Attack on AES reduced to five rounds

One byte after i rounds of encryption, a↵ects only 4 bytes
after i + 1 rounds of encryption

Use three-round fourth-order integral with 28 texts

Compute backwards from ciphertexts “to S” guessing four
bytes in last-round key and one byte of second-to-last round
key

Repeat for all sets of four bytes in last-round key

Running time is approximately that of c2 ⇥ 4⇥ 28 encryptions
for c2 ' 20
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Higher Order Integrals

Sets of vectors S̃ = S1 [ · · · [ Ss where each Si forms an integral

If integral over each Si is known, the integral over S̃ known

Suppose a word can take m values

a first-order integral:
a set of m vectors di↵erent in only in one word

a dth-order integral:
a set of md vectors di↵erent in d components, s.t. each of md

possible values for the d-tuple occurs exactly once

Notation: Ad
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AES: four-round fourth-order integral

A4 C C C

C A4 C C

C C A4 C

C C C A4

�!

A4 C C C

A4 C C C

A4 C C C

A4 C C C

�!

A4 A4 A4 A4

A4 A4 A4 A4

A4 A4 A4 A4

A4 A4 A4 A4

�!
A4 A4 A4 A4

A4 A4 A4 A4

A4 A4 A4 A4

A4 A4 A4 A4

�!

S S S S

S S S S

S S S S

S S S S
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Attack on AES reduced to six rounds

Use four-round fourth-order integral with 232 texts

Compute backwards from ciphertexts guessing 5 bytes of
secret key

Running time is approximately that of 242 encryptions
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