Advanced Encryption Standard

Lars R. Knudsen

June 2014

AES - Advanced Encryption Standard

- US governmental encryption standard
- Open (world) competition announced January 97
- Blocks: 128 bits
- Keys: choice of 128 -bit, 192-bit, and 256-bit keys
- October 2000: AES=Rijndael
- Standard: FIPS 197, November 2001

AES=Rijndael

- Designed by Joan Daemen and Vincent Rijmen
- Simple design, byte-oriented
- Operations: XOR and table lookup
- S-box, substitutes a byte by a byte

Rounds	10	12	14
Key size	128	192	256

- Focus on 128 -bit key version with 10 iterations

Multiplication in GF(256) - AES

- In AES the finite field $G F\left(2^{8}\right)$ is determined by irreducible polynomial

$$
m(x)=x^{8}+x^{4}+x^{3}+x+1
$$

- Elements of $G F\left(2^{8}\right)$ are all polynomials of degree less than eight and with coefficients in $G F(2)$
- 1-to-1 correspondence between 8 -bit vectors and elements in $G F\left(2^{8}\right)$:
- finite field element $p(x)=\sum_{i=0}^{7} b_{i} x^{i}$.
- 8 -bit vector $v=\left(b_{7}, b_{6}, b_{5}, b_{4}, b_{3}, b_{2}, b_{1}, b_{0}\right)$

Multiplication in GF(256) (cont.)

Compute $p(x)$ times $q(x)$, where $p(x)=\sum_{i=0}^{7} b_{i} x^{i}$, $q(x)=\sum_{i=0}^{7} c_{i} x^{i}$:

- Do straightforward multiplication of polynomials $p(x) \cdot q(x)$;
- Reduce result modulo $m(x)$.

Example

Compute $x^{6}+x^{4}+x^{2}+x+1$ times $x^{7}+x+1$

- $\left(x^{6}+x^{4}+x^{2}+x+1\right)\left(x^{7}+x+1\right)=$
$x^{13}+x^{11}+x^{9}+x^{8}+x^{6}+x^{5}+x^{4}+x^{3}+1$
- $x^{13}+x^{11}+x^{9}+x^{8}+x^{6}+x^{5}+x^{4}+x^{3}+1 \bmod x^{8}+x^{4}+x^{3}+x+1=$ $x^{7}+x^{6}+1$
Alternative representation: $57_{x} \times 83_{x}=c 1_{x}$ (hex notation)

Multiplication by x in $\operatorname{GF}(256)$

Find the product $r(x)$ of $p(x)=\sum_{i=0}^{7} b_{i} x^{i}$ and x in $G F\left(2^{8}\right)$:

- Compute $p(x) \cdot x=\sum_{i=0}^{7} b_{i} x^{i+1}$
- If $b_{7}=0, r(x)=p(x) \cdot x$

$$
\text { If } b_{7}=1, r(x)=p(x) \cdot x \bmod m(x)=p(x) \cdot x+m(x)
$$

Example

- $\left(x^{7}+x^{6}+x^{5}+x^{4}+x^{2}\right) \times x=x^{8}+x^{7}+x^{6}+x^{5}+x^{3}$
- reduce modulo $m(x)=x^{8}+x^{4}+x^{3}+x+1$
- result is $x^{7}+x^{6}+x^{5}+x^{4}+x+1$
- Hex notation: $f 4_{x} \times 02_{x}=f 3_{x}$

Multiplication by $x+1$ in GF(256)

Find the product $r(x)$ of $p(x)=\sum_{i=0}^{7} b_{i} x^{i}$ and $x+1$ in $G F\left(2^{8}\right)$:

- Compute $(p(x) \cdot x)+p(x)=\sum_{i=0}^{7} b_{i}\left(x^{i}+x^{i+1}\right)$
- If $b_{7}=0, r(x)=p(x) \cdot x+p(x)$

$$
\begin{aligned}
& \text { If } b_{7}=1 \\
& r(x)=(p(x) \cdot x)+p(x) \bmod m(x)=p(x) \cdot x+p(x)+m(x)
\end{aligned}
$$

Example

- $\left(x^{7}+x^{6}+x^{5}+x^{4}+x^{2}\right) \times(x+1)=x^{8}+x^{4}+x^{3}+x^{2}$
- reduce modulo $m(x)=x^{8}+x^{4}+x^{3}+x+1$
- result is $x^{2}+x+1$
- Hex notation: $f 4_{x} \times 03_{x}=07_{x}$

AES - iterated cipher, key schedule

- Input: user selected key of 128 bits
- Output: 11 round keys $k_{0}, k_{1}, k_{2}, \ldots, k_{10}$
- $p=c_{0}$ plaintext
- $c_{i}=F\left(k_{i}, c_{i-1}\right)$
- c_{10} ciphertext
- Details of key-schedule are self-study

AES round tranformation

Arrange the 16 input bytes in a 4×4 matrix

Subfunctions

(1) SubBytes (byte substitution via S-box)
(2) ShiftRows
(3) MixColumns
(9) AddRoundKey

SubBytes

S-box

S is the S-box (invertible)
One S-box for the whole cipher (simplicity)

ShiftRows

a	b	c	d					
e	f	g	h					
i	j	k	l					
m	n	o	p	\longrightarrow	a	b	c	d
:---	:---	:---	:---					
f	g	h	e					
k	l	i	j					
p	m	n	o					

Rows shifted over different offsets: $0,1,2$, and 3

MixColumns

Each of four $b_{i, j}$ in a column depends on all four $a_{i, j}$ from same column

AddRoundKey (bit-wise XOR)

$a_{0,0}$	$a_{0,1}$	$a_{0,2}$	$a_{0,3}$
$a_{1,0}$	$a_{1,1}$	$a_{1,2}$	$a_{1,3}$
$a_{2,0}$	$a_{2,1}$	$a_{2,2}$	$a_{2,3}$
$a_{3,0}$	$a_{3,1}$	$a_{3,2}$	$a_{3,3}$

$k_{0,0}$	$k_{0,1}$	$k_{0,2}$	$k_{0,3}$					
$k_{1,0}$	$k_{1,1}$	$k_{1,2}$	$k_{1,3}$					
$k_{2,0}$	$k_{2,1}$	$k_{2,2}$	$k_{2,3}$					
$k_{3,0}$	$k_{3,1}$	$k_{3,2}$	$k_{3,3}$	$=$	$b_{0,0}$	$b_{0,1}$	$b_{0,2}$	$b_{0,3}$
:---	:---	:---	:---					
$b_{1,0}$	$b_{1,1}$	$b_{1,2}$	$b_{1,3}$					
$b_{2,0}$	$b_{2,1}$	$b_{2,2}$	$b_{2,3}$					
$b_{3,0}$	$b_{3,1}$	$b_{3,2}$	$b_{3,3}$					

$$
b_{i, j}=a_{i, j} \oplus k_{i, j}
$$

AES - 10-round version

Arrange the 16 input bytes in a 4×4 matrix

- AddRoundKey
- Do nine times
- SubBytes (byte substitution via S-box)
- ShiftRows
- MixColumns
- AddRoundKey
- SubBytes
- ShiftRows
- AddRoundKey

SubBytes

- Input a, output b, both bytes
- Let $f(x)=x^{-1}$ in $G F\left(2^{8}\right) /\{0\}$ and $f(0)=0$
- Then $b=A(f(a))$, where A is affine mapping over $G F(2)$. With $t=f(a)=\left(t_{7}, t_{6}, \ldots, t_{1}, t_{0}\right)$ output is:

$$
\left[\begin{array}{llllllll}
1 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\
1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 \\
1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 \\
1 & 1 & 1 & 1 & 0 & 0 & 0 & 1 \\
1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 1 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 & 1 & 1
\end{array}\right]\left[\begin{array}{c}
t_{0} \\
t_{1} \\
t_{2} \\
t_{3} \\
t_{4} \\
t_{5} \\
t_{6} \\
t_{7}
\end{array}\right] \oplus\left[\begin{array}{l}
1 \\
1 \\
0 \\
0 \\
0 \\
1 \\
1 \\
0
\end{array}\right]
$$

MixColumns

Bytes in columns are combined linearly

$$
b_{0,2}=\{2\} \times a_{0,2}+\{3\} \times a_{1,2}+\{1\} \times a_{2,2}+\{1\} \times a_{3,2}
$$

Multiplication is over $\operatorname{GF}\left(2^{8}\right)$

Diffusion in AES

Differential characteristics and active S-boxes

Consider SP-networks like AES, where a round consists of

- key addition
- S-box layer
- linear layer (linear mapping)

Definition

In a differential characteristic an S-box is active if the inputs to the S-box are assumed to be different.

Fact (or assumption)

The transition of differences

- is deterministic through the key additions and linear layers.
- is non-deterministic through the S-box layers.

Differential characteristics and active S-boxes (2)

Max probability

Let $p_{\text {max }}$ be the maximum probability for a non-trivial characteristic for the S-boxes.

Active S-boxes

Let d be the minimum number of active S-boxes in an r-round characteristic.

Bound

Then $p_{\max }^{d}$ is an upper bound of any r-round characteristic.

AES and Wide-Trail

The AES design uses the wide-trail strategy:

Theorem

Any differential/linear characteristic over 4 rounds of AES has at least 25 active Sboxes.

- AES has 10 (or more) rounds
- Together with the good Sbox: More than enough.

2 Rounds

S	S	S	S

Linear Layer L

S	S	S	S

Aim

Give a bound on the number of active Sboxes in a differential characteristic.

We assume S and L are bijective.

- Llinear, so $L(x \oplus y)=L(x) \oplus L(y)$.
- No further assumptions on S

2 Rounds

S	S	S	S

Linear Layer L

S	S	S	S

Aim

Give an lower bound on the number of active Sboxes in a differential characteristic.

Trivial bounds:

- Lower Bound for the lower bound: 2
- Upper Bound for the lower bound: \#sboxes + 1 (here 5).

2 Rounds

Picture with differences:

$$
\begin{aligned}
& \Delta=\alpha \quad \alpha_{0} \quad \alpha_{1} \quad \alpha_{2} \quad \alpha_{3}
\end{aligned}
$$

- $\gamma=L(\beta)$
- \# active Sboxes is

$$
\left|\left\{i \mid \alpha_{i} \neq 0\right\}\right|+\left|\left\{j \mid \gamma_{j} \neq 0\right\}\right|=\left|\left\{i \mid \beta_{i} \neq 0\right\}\right|+\left|\left\{j \mid \gamma_{j} \neq 0\right\}\right|
$$

Trivial lower bound on 2 rounds

$\Delta=\alpha \quad \alpha_{0} \quad \alpha_{1} \quad \alpha_{2} \quad \alpha_{3}$

Linear Layer L
$\Delta=\gamma$

γ_{0}	γ_{1}	γ_{2}	γ_{3}
S	S	S	S

Lower bound: 2

- $\alpha \neq 0$ (at least one $\alpha_{i} \neq 0$).
- $\Rightarrow \beta \neq 0$ (at least one $\beta_{i} \neq 0$).
- $\Rightarrow \gamma \neq 0$ (at least one $\gamma_{i} \neq 0$).
(Sbox bijective)
(L is bijective)
- $\Rightarrow\left|\left\{i \mid \alpha_{i} \neq 0\right\}\right|+\left|\left\{j \mid \gamma_{j} \neq 0\right\}\right| \geq 1+1=2$

Trivial upper bound on 2 rounds

$$
\begin{aligned}
& \Delta=\alpha \quad \alpha_{0} \quad \alpha_{1} \quad \alpha_{2} \quad \alpha_{3} \\
& \Delta=\beta \\
& \text { Linear Layer L } \\
& \Delta=\gamma
\end{aligned}
$$

Upper bound on the lower bound: \#sboxes +1 (here 5).

$$
\left|\left\{i \mid \alpha_{i} \neq 0\right\}\right|+\left|\left\{j \mid \gamma_{j} \neq 0\right\}\right| \leq 1+4=5
$$

Definition

The branch number of a linear transformation L is the minimum number of active words (Sboxes) in the inputs and outputs of L.

AES MixColumns - branch number

MixColumns: multiplication of a $(4 \times 1) \mathrm{GF}\left(2^{8}\right)$-column vector by a $(4 \times 4) \mathrm{GF}\left(2^{8}\right)$-matrix M given by

$$
M=\left(\begin{array}{llll}
02 & 03 & 01 & 01 \\
01 & 02 & 03 & 01 \\
01 & 01 & 02 & 03 \\
03 & 01 & 01 & 02
\end{array}\right)
$$

M derived from MDS code over $G F\left(2^{8}\right)$ with parameters $[8,4,5]$.

Fact

The branch number of MixColumns is five.

4 rounds of AES - the super box

S S [[[5		S S S S	S S [5 S S
4 t -1, erer		L_{2}-1.ler	4 Liluer
(5) [5] [5] [5	(S) [S] ST	(5) [5] [5	(S) [\|S [S
\square			
L_{2}-Layer			
1	1	1	I
(5) [5] [5]	[() [[[[[S] [S]	[(5) [5] [S
	L_{2}-1, erer	L_{2}-19er	$L_{\text {L-IAer }}$
S S] [[S S S S	S S S S	S S S S

4 rounds of AES

- Choose L_{1} to ensure b_{1} sboxes in each Super-Box
- Choose L_{2} to ensure b_{2} active Super-Boxes

Concatenation of Codes

Each characteristic over 4 rounds has at least $b_{1} \cdot b_{2}$ active Sboxes.
For AES: $b_{1}=b_{2}=5$ thus 25 active Sboxes over 4 rounds.

Bounds of probabilities of characteristics of the AES

- 25 active Sboxes over 4 rounds.
- S-box is differentially 4 -uniform, so maximum probability of characteristic is

$$
4 / 2^{8}=2^{-6}
$$

- maximum probability for characteristic over 4 rounds is 2^{-150}.
- maximum probability for characteristic over 8 rounds is 2^{-300}.

Integral cryptanalysis or the Square attack

Lars R. Knudsen

June 2014

Integral cryptanalysis

- $(G,+)$ finite abelian group, order k
- S a set of vectors in $G \times G \times \cdots \times G$
- An integral over S :

$$
\sum_{v \in S} v
$$

where summation is defined by ' + '

- Typically, a vector element is a plaintext/ciphertext word and a vector represents a plaintext or ciphertext

Integrals, cont.

- Let $v(i)=\left(v_{0}(i), v_{1}(i), \ldots, v_{n-1}(i)\right) \in G^{n}$
- Let S a set of vectors $\{v(i)\}$
- Three distinct cases where c_{j} and s are some known values

Case

$$
\begin{aligned}
& v_{j}(i)=c_{j} \text { for all } v(i) \in S \\
& \left\{v_{j}(i) \mid v(i) \in S\right\}=G \\
& \sum_{v(i) \in S} v_{j}(i)=s
\end{aligned}
$$

$v_{j}(i)=c_{j}$ for all $v(i) \in S$	\mathcal{C}	"constant"
$\left\{v_{j}(i) \mid v(i) \in S\right\}=G$	\mathcal{A}	"all"
$\sum_{v(i) \in S} v_{j}(i)=s$	\mathcal{S}	sum is known

- In most (all?) cases the integral over S can be determined

Useful facts

Theorem

$(G,+)$ finite abelian additive group, let $H=\{g \in G \mid g+g=0\}$. Then $s(G)=\sum_{g \in G} g=\sum_{h \in H} h$.

Example

$G=Z / m Z$, even $m: s(G)=m / 2$, odd $m: s(G)=0$.
$G=G F\left(2^{s}\right): s(G)=0$.

Theorem

($G, *$) finite abelian multiplicative group, let
$H=\{g \in G \mid g * g=1\}$. Then $p(G)=\prod_{g \in G} g=\prod_{h \in H} h$.

Example

For $G=Z / p Z$ for p prime: $p(G)=p-1$.

AES - (first-order) 3-round integral, 256 texts

\mathcal{A}	\mathcal{C}	\mathcal{C}	\mathcal{C}
\mathcal{C}	\mathcal{C}	\mathcal{C}	\mathcal{C}
\mathcal{C}	\mathcal{C}	\mathcal{C}	\mathcal{C}
\mathcal{C}	\mathcal{C}	\mathcal{C}	\mathcal{C}
\mathcal{S}	\mathcal{S}	\mathcal{S}	\mathcal{S}
\mathcal{S}	\mathcal{S}	\mathcal{S}	\mathcal{S}
\mathcal{S}	\mathcal{S}	\mathcal{S}	\mathcal{S}
\mathcal{S}	\mathcal{S}	\mathcal{S}	\mathcal{S}

$\left.\rightarrow \begin{array}{|c|c|c|}\hline \mathcal{A} & \mathcal{C} & \mathcal{C} \\ \mathcal{C} \\ \hline \mathcal{A} & \mathcal{C} & \mathcal{C} \\ \mathcal{C} \\ \hline \mathcal{A} & \mathcal{C} & \mathcal{C} \\ \hline \mathcal{A} & \mathcal{C} & \mathcal{C} \\ \hline \mathcal{C} \\ \hline & \\ \hline \mathcal{A} & \mathcal{A} & \mathcal{A}\end{array}\right) \mathcal{A}$

Here $\mathcal{S}=0$

Attack on AES reduced to four rounds

- Use three-round integrals with 2^{8} texts
- Compute backwards from ciphertexts "to \mathcal{S} " guessing one byte of last-round key
- Repeat for all sixteen bytes in last-round key
- Running time is approximately that of $c \times 16 \times 2^{8}$ encryptions for small $c>1$

Attack on AES reduced to five rounds

- One byte after i rounds of encryption, affects only 4 bytes after $i+1$ rounds of encryption
- Use three-round fourth-order integral with 2^{8} texts
- Compute backwards from ciphertexts "to \mathcal{S} " guessing four bytes in last-round key and one byte of second-to-last round key
- Repeat for all sets of four bytes in last-round key
- Running time is approximately that of $c_{2} \times 4 \times 2^{8}$ encryptions for $c_{2} \simeq 20$

Higher Order Integrals

Sets of vectors $\tilde{S}=S_{1} \cup \cdots \cup S_{s}$ where each S_{i} forms an integral If integral over each S_{i} is known, the integral over \tilde{S} known
Suppose a word can take m values

- a first-order integral:
a set of m vectors different in only in one word
- a dth-order integral:
a set of m^{d} vectors different in d components, s.t. each of m^{d} possible values for the d-tuple occurs exactly once
Notation: \mathcal{A}^{d}

AES: four-round fourth-order integral

\mathcal{A}^{4}	\mathcal{C}	\mathcal{C}	\mathcal{C}					
\mathcal{C}	\mathcal{A}^{4}	\mathcal{C}	\mathcal{C}					
\mathcal{C}	\mathcal{C}	\mathcal{A}^{4}	\mathcal{C}					
\mathcal{C}	\mathcal{C}	\mathcal{C}	\mathcal{A}^{4}					
$\overrightarrow{\mathcal{A}^{4}}$	\mathcal{A}^{4}	\mathcal{A}^{4}	\mathcal{A}^{4}					
\mathcal{A}^{4}	\mathcal{A}^{4}	\mathcal{A}^{4}	\mathcal{A}^{4}					
\mathcal{A}^{4}	\mathcal{A}^{4}	\mathcal{A}^{4}	\mathcal{A}^{4}					
\mathcal{A}^{4}	\mathcal{A}^{4}	\mathcal{A}^{4}	\mathcal{A}^{4}	\longrightarrow	\mathcal{A}^{4}	\mathcal{C}	\mathcal{C}	\mathcal{C}
:---	:---	:---	:---					
\mathcal{A}^{4}	\mathcal{C}	\mathcal{C}	\mathcal{C}					
\mathcal{A}^{4}	\mathcal{C}	\mathcal{C}	\mathcal{C}					
\mathcal{A}^{4}	\mathcal{C}	\mathcal{C}	\mathcal{C}					
\mathcal{S}	\mathcal{S}	\mathcal{S}	\mathcal{S}					
\mathcal{S}	\mathcal{S}	\mathcal{S}	\mathcal{S}					
\mathcal{S}	\mathcal{S}	\mathcal{S}	\mathcal{S}					
\mathcal{S}	\mathcal{S}	\mathcal{S}	\mathcal{S}	\quad	\mathcal{A}^{4}	\mathcal{A}^{4}	\mathcal{A}^{4}	\mathcal{A}^{4}
:---	:---	:---	:---					
\mathcal{A}^{4}	\mathcal{A}^{4}	\mathcal{A}^{4}	\mathcal{A}^{4}					
\mathcal{A}^{4}	\mathcal{A}^{4}	\mathcal{A}^{4}	\mathcal{A}^{4}					
\mathcal{A}^{4}	\mathcal{A}^{4}	\mathcal{A}^{4}	\mathcal{A}^{4}					

Attack on AES reduced to six rounds

- Use four-round fourth-order integral with 2^{32} texts
- Compute backwards from ciphertexts guessing 5 bytes of secret key
- Running time is approximately that of 2^{42} encryptions

